Research

Developing a Cover Crop-Based, No-Till System for Small-Scale Vegetable Producers: Effects on Soil Health, Weeds, Arthropod Communities, and Yield

In the Midwest, one limitation faced by small- and mid-scale organic producers involving cover crop-based, no-till systems is the expense associated with equipment such as a roller crimper needed to terminate the cover crop for spring planting. Thus, the development of an effective no-till system that does not require the use of expensive equipment would be beneficial to producers.

Examination of Organic Grain Productivity to Support the Upper Peninsula Organic Livestock Industry

The Upper Peninsula of Michigan is experiencing an agricultural renaissance, which is being fueled by a new generation of farmers wanting to return to the land. Although many of these operations would be considered small in scale, they are often direct to market enterprises managed within an organic system. Furthermore, many operations contain stacked enterprises, integrating both crop and livestock production.

Development of Wheat Varieties For Organic Farmers

From the mid-1950’s on, most wheat in the U.S. has been grown in and bred for high-input, traditional agricultural conditions.  These conditions include the common use of artificial fertilizers and chemical herbicides and fungicides, practices that are not allowed under current certified organic standards.  We believe that traits specifically adapted to and useful for organic wheat production have been lost from the gene pool of modern wheat varieties due to the intensive chemical management common in current wheat-breeding programs.

Nutrient Budgeting in Organic Grain Production

Green manures (GMs) play an essential role in organic grain-based systems on the Canadian prairies by contributing to soil health, cash crop yield, and grain quality. While this is well documented on research farms, a recent scan conducted by the Prairie Organic Grain Initiative (POGI), indicated poor adoption of GMs and lack of proper GM management. The goal of this research project is to increase the use and proper management of GMs.

Creating Climate Resilient Organic Systems by Enhancing Arbuscular Mycorrhizal Fungi Associations

While the majority of carrots are cultivated in California, recent droughts and water use restrictions may impact the success of future crops. Even in states such as Wisconsin, where water is more abundant, crops still must overcome oscillating soil moisture regimes due to differences in soil drainage, water-holding capacity, and microclimate conditions, as well as the anticipated drier summers which are predicted to increase with climate change.

A New Approach for Successful Organic Peach Production in the Southeast

The production of organic peaches is extremely difficult under the humid conditions of the Southeast due to high pest and disease pressures, and the lack of effective, organically approved pesticides. Consequently, only very few growers have taken the risk and transitioned into organic peach farming. This proposal aims to provide growers in the Southeast with a new tool to reduce the risk of transitioning to organic production of peaches. This strategy consists of the use of paper bags to physically protect the fruit from pests and diseases to reduce reliance on spray applications.

Developing integrated Irrigation Management Strategies to Improve Water and Nutrient Use Efficiency of Organic Processing Tomato Production

This project aims at developing integrated irrigation practices that capitalize on soil health to improve the efficiency of irrigation water and decrease pest pressure and potential N losses of California organic processing tomato production. The current drought has dramatically decreased irrigation water allocated to organic tomato growers and there is an urgent need to test new irrigation strategies that reduce water inputs while maintaining product quality, nutrient supply and high productivity levels.

Field Evaluation of Designed Compost Extracts for Organic Weed Suppression

Organic vegetable growers need practical and cost-effective technology to reduce weed pressure and yield losses. In 2013-2014, OFRF funded Dr. Gladis Zinati at the Rodale Institute to perform laboratory and greenhouse trials on the weed suppressing ability of chemically- and biologically-designed compost extracts (DCE). Dr. Zinati found that DCEs with lower nitrate levels and greater nematode-to-protozoa ratios significantly reduced lambsquarter weed seed germination by 32% without affecting crop seed percent germination.